Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J. appl. oral sci ; 24(1): 67-75, Jan.-Feb. 2016. tab, graf
Article in English | LILACS, BBO | ID: lil-777353

ABSTRACT

ABSTRACT An increasing body of evidence suggests that the use of probiotic bacteria is a promising intervention approach for the treatment of inflammatory diseases with a polymicrobial etiology. P. gingivalis has been noted to have a different way of interacting with the innate immune response of the host compared to other pathogenic bacteria, which is a recognized feature that inhibits CXCL8 expression. Objective The aim of the study was to determine if P. gingivalis infection modulates the inflammatory response of gingival stromal stem cells (G-MSSCs), including the release of CXCL8, and the expression of TLRs and if immunomodulatory L. rhamnosus ATCC9595 could prevent CXCL8 inhibition in experimental inflammation. Material and Methods G-MSSCs were pretreated with L. rhamnosus ATCC9595 and then stimulated with P. gingivalis ATCC33277. CXCL8 and IL-10 levels were investigated with ELISA and the TLR-4 and 2 were determined through flow cytometer analysis. Results CXCL8 was suppressed by P. gingivalis and L. rhamnosus ATCC9595, whereas incubation with both strains did not abolish CXCL8. L. rhamnosus ATCC9595 scaled down the expression of TLR4 and induced TLR2 expression when exposed to P. gingivalis stimulation (p<0.01). Conclusions These findings provide evidence that L. rhamnosus ATCC9595 can modulate the inflammatory signals and could introduce P. gingivalis to immune systems by inducing CXCL8 secretion.


Subject(s)
Humans , Young Adult , Interleukin-8/analysis , Porphyromonas gingivalis/immunology , Probiotics/pharmacology , Lacticaseibacillus rhamnosus/physiology , Mesenchymal Stem Cells/microbiology , Periodontitis/microbiology , Bacterial Adhesion/immunology , Enzyme-Linked Immunosorbent Assay , Cells, Cultured , Interleukin-8/immunology , Interferon-gamma/analysis , Interferon-gamma/immunology , Interleukin-10 , Statistics, Nonparametric , Toll-Like Receptor 4/analysis , Toll-Like Receptor 4/immunology , Flow Cytometry , Immunity, Innate
2.
Experimental & Molecular Medicine ; : e191-2015.
Article in English | WPRIM | ID: wpr-165769

ABSTRACT

Atherosclerosis is a leading cause of death worldwide and is characterized by lipid-laden foam cell formation. Recently, pycnogenol (PYC) has drawn much attention because of its prominent effect on cardiovascular disease (CVD). However, its protective effect against atherosclerosis and the underlying mechanism remains undefined. Here PYC treatment reduced areas of plaque and lipid deposition in atherosclerotic mice, concomitant with decreases in total cholesterol and triglyceride levels and increases in HDL cholesterol levels, indicating a potential antiatherosclerotic effect of PYC through the regulation of lipid levels. Additionally, PYC preconditioning markedly decreased foam cell formation and lipid accumulation in lipopolysaccharide (LPS)-stimulated human THP-1 monocytes. A mechanistic analysis indicated that PYC decreased the lipid-related protein expression of adipose differentiation-related protein (ADRP) and adipocyte lipid-binding protein (ALBP/aP2) in a dose-dependent manner. Further analysis confirmed that PYC attenuated LPS-induced lipid droplet formation via ADRP and ALBP expression through the Toll-like receptor 4 (TLR4) and nuclear factor-kappaB (NF-kappaB) pathway, because pretreatment with anti-TLR4 antibody or a specific inhibitor of NF-kappaB (PDTC) strikingly mitigated the LPS-induced increase in ADRP and ALBP. Together, our results provide insight into the ability of PYC to attenuate bacterial infection-triggered pathological processes associated with atherosclerosis. Thus PYC may be a potential lead compound for the future development of antiatherosclerotic CVD therapy.


Subject(s)
Animals , Humans , Male , Mice , Anti-Inflammatory Agents/therapeutic use , Atherosclerosis/drug therapy , Cell Line , Flavonoids/therapeutic use , Foam Cells/drug effects , Lipid Metabolism/drug effects , NF-kappa B/immunology , Signal Transduction/drug effects , Toll-Like Receptor 4/immunology
3.
Indian J Biochem Biophys ; 2014 Dec ; 51 (6): 531-541
Article in English | IMSEAR | ID: sea-156534

ABSTRACT

In visceral leishmaniasis, a fragmentary IL-12 driven type 1 immune response along with the expansion of IL-10 producing T-cells correlates with parasite burden and pathogenesis. Successful immunotherapy involves both suppression of IL-10 production and enhancement of IL-12 and nitric oxide (NO) production. As custodians of the innate immunity, the toll-like receptors (TLRs) constitute the first line of defense against invading pathogens. The TLR-signaling cascade initiated following innate recognition of microbes shapes the adaptive immune response. Whereas numerous studies have correlated parasite control to the adaptive response in Leishmania infection, growing body of evidence suggests that the activation of the innate immune response also plays a pivotal role in disease pathogenicity. In this study, using a TLR4 agonist, a Leishmania donovani (LD) derived 29 kDa β 1,4 galactose terminal glycoprotein (GP29), we demonstrated that the TLR adaptor myeloid differentiation primary response protein-88 (MyD88) was essential for optimal immunity following LD infection. Treatment of LD-infected cells with GP29 stimulated the production of IL-12 and NO while suppressing IL-10 production. Treatment of LD-infected cells with GP29 also induced the degradation of IKB and the nuclear translocation of NF-kB, as well as rapid phosphorylation of p38 MAPK and p54/56 JNK. Knockdown of TLR4 or MYD88 using siRNA showed reduced inflammatory response to GP29 in LD-infected cells. Biochemical inhibition of p38 MAPK, JNK or NF-kB, but not p42/44 ERK, reduced GP29-induced IL-12 and NO production in LD-infected cells. These results suggested a potential role for the TLR4-MyD88–IL-12 pathway to induce adaptive immune responses to LD infection that culminated in an effective control of intracellular parasite replication.


Subject(s)
Animals , Down-Regulation/immunology , Immunity, Cellular/immunology , Interleukin-10/immunology , Leishmania donovani/enzymology , Leishmania donovani/immunology , Leishmaniasis/immunology , Leishmaniasis/pathology , Macrophage Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Myeloid Differentiation Factor 88/immunology , Signal Transduction/immunology , Th1 Cells/immunology , Toll-Like Receptor 4/immunology
SELECTION OF CITATIONS
SEARCH DETAIL